Библиотечные элементы Multisim. Описание программы Multisim Как моделировать силовые цепи в мультисим


В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!

Возможности системы схемотехнического моделирования определяются многими факторами, в том числе составом элементов из которых формируется эквивалентная схема.

Последовательное выполнение команд P lace\ Component… (Ctrl+W) вызывает панель «Seleсt a Component». С помощью мастера библиотеки «Master Library» следует выбрать из базы данных «Database» необходимый набор библиотечных компонентов. Все компоненты распределены по нескольким тематическим группам и подгруппам (рис.2.4). Вначале следует выбрать название группы «Group» (например, «Sources» - источники). Затем задать имя подгруппы «Family» (например, «POWER_SOURCES» - источники энергии). В графе «Component» будут приведен перечень элементов данного раздела библиотеки:

    АС POWER – источник переменного тока;

    DС POWER – источник постоянного тока;

    DGND – цифровая земля;

    GROUND – аналоговая земля;

    THREE PHASE DELTA – трехфазный источник (треугольник);

    THREE PHASE WYE – трехфазный источник (звезда),

и другие.

Рис.2.4. Часть окна выбора элементов схемы

Каждая позиция с именем элемента (например, полупроводникового диода) содержит множество конкретных приборов, выпускаемых различными фирмами и отличающихся значениями параметров.

Наряду с источниками «Sources» при моделировании электрических цепей используются базовые элементы группы «Basic» (рис.2.5).

Рис.2.5. Группа базовых элементов

В группу включены различные типы резисторов, конденсаторов, катушек индуктивности, трансформаторов, переключателей и других элементов. Вместе с промышленными элементами в библиотеке имеются виртуальные компоненты, параметры которых в рамках математического описания может устанавливать пользователь. Избранный элемент имеет по умолчанию некоторый начальный набор типовых параметров. Виртуальные элементы отличаются более простой процедурой их вызова щелчком левой кнопки мыши на ярлыке группы элементов и последующего помещения выбранного компонента на рабочее поле (см. рис.2.1).

Каждая группа содержит несколько типов виртуальных элементов. Источники сигналов “Sources” образуют две группы (рис.2.6).

Рис.2.6. Панели виртуальных источников энергии (а ) и сигналов различной формы (б )

Наряду с уже рассмотренными источниками энергии имеются источники напряжения и тока, выдающие сигналы различной формы: постоянные и синусоидальные, синусоидальные и модуляцией амплитуды или частоты, прямоугольных импульсов, экспоненциальных импульсов, сложной формы с кусочно-линейной аппроксимацией, белого шума.

Группа элементов “Basic” содержит пассивные схемные компоненты (резисторы, конденсаторы, индуктивности, трансформаторы) и другие элементы (рис.2.7,а ).

Рис.2.7. Панели виртуальных элементов “Basic” (а ), “Transistors”(б ) и “Diodes” (в )

Группы “Diodes…” (рис.2.7,в ), “Transistors…” (рис.2.7,б ), содержат полупроводниковые диоды и транзисторы различных типов: биполярные и полевые.

Группа разнообразных элементов “Miscellaneous” (рис.2.8,а ) содержит аналоговый коммутатор, кварцевый резонатор, плавкий предохранитель, лампу, двигатель постоянного тока, оптрон, цифровые индикаторы, таймер и другие элементы. Группа измерительных и индикаторных устройств “Measurement С…” (рис.2.8,б ) представлена набором разноцветных светодиодов и универсальных цифровых амперметров и вольтметров с разной ориентацией на рабочем поле.

Рис.2.8. Панели виртуальных разных элементов (а ), индикаторов и измерителей (б )

Имеются также группы операционных усилителей, цифровых логических элементов и микросхем. Для иллюстрации «сборки» схем с использованием «реальных»элементов в библиотеку введены их трехмерные изображения (рис.2.9).

Рис.2.9. Панель с изображением виртуальных элементов

Информацию о выбранном библиотечном элементе (модели, характеристики, параметры и примеры использования) можно получить с помощью быстрой помощи.

Для этого следует разместить элемент на рабочем поле:

    открыть щелчком левой кнопки мыши соответствующую панель;

    выбрать щелчком левой кнопки мыши требуемый элемент;

    с помощью курсора поместить его в заданную область поля.

Если элемент уже находится на рабочем поле, то его необходимо выделить щелчком левой кнопки мыши (при этом границы элемента будут отмечены черными квадратиками). Вызвать панель операций с изображением элемента щелчком правой кнопки мыши и на ней щелчком левой кнопки мыши выбрать команду “Help”. Откроется панель “Msmapp” контекстной помощи на английском языке (рис.2.10).

Рис.2.10. Контекстная справка о характеристиках диода

Из приведенного перечня выбрать требуемый раздел помощи (например, статические характеристики полупроводникового диода) и ознакомиться с ними или распечатать для более подробного изучения.

Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями компонентов: реальными (real) и виртуальными (virtual). Необходимо ясно понимать различия между ними, чтобы в полной мере воспользоваться их преимуществами.

Рис.6 Символы различных компонентов: 7-сегментный дисплей, диод D 1, источник напряжения V 1, логические элементы НЕ-И U 2A , микроконтроллерU 3 и транзистор Q 1.

Есть и другая классификация компонентов: аналоговые, цифровые, смешанные, анимированные, интерактивные, цифровые с мультивыбором, электромеханические и радиочастотные.

Горячая клавиша по умолчанию для размещения компонента – Ctrl+W или двойной щелчок мыши по панели Реальные компоненты / Аналоговые устройства .

У реальных компонентов, в отличие от виртуальных есть определенное, неизменяемое значение и свое соответствие на печатной плате.

Виртуальные компоненты нужны только для эмуляции, пользователь может назначить им произвольные параметры. Например, сопротивление виртуального резистора может быть произвольным. Виртуальные компоненты помогают разработчикам при проверке с помощью схем с известными значениями компонентов. Виртуальные компоненты также могут не соответствовать реальным, например, как 4-х контактный элемент отображения 16-тиричных цифр.

В Multisim есть базы данных трех уровней:

Из Главной базы данных (Master Database) можно только считывать информацию, в ней находятся все компоненты;

Пользовательская база данных (User Database) соответствует текущему пользователю компьютера. Она предназначена для хранения компонентов, которые нежелательно предоставлять в общий доступ;

Корпоративная база данных (Corporate Database). Предназначена для тех компонентов, которые должны быть доступны другим пользователям по сети.

Средства управления базами данных позволяют перемещать компоненты, объединять две базы в одну и редактировать их. Все базы данных разделяются на группы, а они, в свою очередь, на семейства. Когда пользователь выбирает компонент и помещает его в схему, создается новая копия. Все изменения с ней никак не затрагивают информацию, хранящуюся в базе данных.

База данных Master Database разделена на группы:

1. Sources содержит все источники напряжения и тока, заземления. Например, power sources (источники постоянного, переменного напряжения, заземление, беспроводные соединения - VCC, VDD, VSS, VEE), signal voltage sources (источники прямоугольных импульсов, источник сигнала через определенные промежутки времени), signal current sourses (постоянные, переменные источники тока, источники прямоугольных импульсов)

2. Basic содержит основные элементы схемотехники: резисторы, индуктивные элементы, емкостные элементы, ключи, трансформаторы,реле, коннекторы и т.д.

3. Diodes содержит различные виды диодов: фотодиоды, диоды Шоттки, светодиоды и т.д.

4. Transistors содержит различные виды транзисторов: pnp-, npn-транзисторы, биполярные транзисоры, МОП-транзисторы, КМОП-транзисторы и т.д.

5. Analog содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

6. TTL содержит элементы транзисторно-транзисторной логики.

7. CMOS. Содержит элементы КМОП-логики.

8. MCU Module – управляющий модуль многопунктовой связи (от англ. multipoint control unit)

9. Advanced_Peripherals содержит подключаемые внешние устройства (дисплеи, терминалы, клавишные поля).

10. Misc Digital содержит различные цифровые устройства.

11. Mixed содержит комбинированные компоненты

12. Indicators содержит измерительные приборы (вольтметры амперметры), лампы и т.д.

3.1. Источники сигналов(вкладки Power Source Components и Signal Source Components).

Рис.7 Семейства компонента источники.

Под источниками сигналов подразумеваются не только источники питания, но и управляемые источники (таблица 8).

Таблица 8.

Изображение источника Функция
Батарея (напряжение). Длинная полоска соответствует положительной Клемме.
Заземление (метка).
Источники фиксированного напряжения. Применяются в логических схемах.
Генератор амплитудно-модулированных колебаний (напряжение и частота несущей, коэффициент и частота модуляции).
Источник постоянного тока (ток).
Источник переменного синусоидального напряжения (эффективное значение напряжения, частота, фаза).
Генератор однополярных прямоугольных импульсов (амплитуда, частота, коэффициент заполнения).
Генератор фазо-модулированных колебаний (напряжение и частота несущей, индекс и частота модуляции).

3.2. Пассивные элементы(вкладка Basic) – библиотека, в которой собраны все пассивные компоненты, а также коммуникационные устройства.


Рис. 8. Семейства компонента пассивные компоненты.


Рис. 9. Семейства компонента диоды.


Рис. 10 Семейства компонента транзисторы.

Таблица 9.

Изображение источника Функция
Резистор (сопротивление).
Катушка индуктивности (индуктивность).
Реле (находится только в библиотеке элементов).
Переключатель, управляемый нажатием заданной клавиши (по умолчанию – пробел).
Потенциометр (реостат). Параметр «Key» определяет символ клавиши клавиатуры (по умолчанию A), при нажатии на которую сопротивление уменьшается на заданную в процентах величину (параметр «Increment», по умолчанию 5%) или увеличивается на такую же величину при нажатии клавиш Shift+«Key». Параметр «Setting» задает начальную установку сопротивления в процентах (по умолчанию – 50%), параметр «Resistance» задает номинальное значение сопротивления.
Конденсатор и катушка индуктивности переменной емкости. Действуют аналогично потенциометру.
Конденсатор (емкость).
Трансформатор.
Полупроводниковый диод (тип).
Стабилитрон (тип).
Светодиод (тип).
Выпрямительный мост (тип).
Диод Шокли (тип).
Тиристор или динистор (тип).
Симметричный динистор или диак (тип).
Симметричный тринистор или триак (тип).
Биполярные n-p-n и p-n-p транзисторы, соответственно (тип).
Полевые транзисторы с управляющим p-n переходом (тип).
n - канальные с обогащенной подложкой и p -канальные с обедненной подложкой), с раздельными или соединенными выводами подложки и истока (тип).
Полевые МОП-транзисторы с изолированным затвором (n - канальные с обогащенным затвором и p -канальные с обедненным затвором), с раздельными или соединенными выводами подложки и истока (тип).

3.3. Аналоговые элементы(вкладка Analog) – библиотека, в которой собраны все усилители.

Интуитивный редактор схем программы Multisim дает возможность за счет экономии времени на рисовании оставлять больше времени на конструирование. Multisim построен так, что нет необходимости переключаться от режима размещения деталей к режиму разводки, как в других аналогичных программах. Multisim поступает к заказчику с полной базой из 16000 деталей и включает в себя имитационную модель, схематический символ, электрические параметры и макет для разводки. Также имеется бесплатный доступ к центру конструирования (Design Center), в котором имеется более 12 миллионов деталей в поисковой базе данных.

Максимальной точностью и достоверностью обладают классические программы схемотехнического моделирования или SPICE-подобные программы (где SPICE с английского - Имитационная Программа со Встроенным Выражением Цепи), к числу которых и относится Multisim. Принцип их работы основан на машинном составлении системы обыкновенных дифференциальных уравнений электрической цепи и их решении без применения упрощающих предположений. Здесь используются численные методы Рунге - Кутта или метод Гира для интегрирования системы дифференциальных уравнений, метод Ньютона - Рафсона для линеаризации системы нелинейных алгебраических уравнений и метод Гаусса или LU-разложение для решения системы линейных алгебраических уравнений. Модификации этих методов направлены на улучшение сходимости или вычислительной эффективности без упрощения исходной задачи.

В Multisim используются следующие функции SPICE моделирования: SPICE-моделирование индустриального стандарта; XSPICE усиление для расширения Berkeley SPICE3 возможностей; моделирование с подключением VHDL и Verilog; интерактивное моделирование; широкий набор источников, включая DC, синусоидальный, импульсный, пилообразный, случайный, AM, FM; программное моделирование; смешанная аналого-цифровое моделирование; современные алгоритмы для разрешения проблем пересекающихся цепей, расширенные опции для получения компромисса скорость/точность. Функции радиочастотного моделирования: SPICE усиления для высокочастотной имитации; RF инструменты и анализы, RF модели и мастер создания собственных моделей.

Multisim - единственный общецелевой пакет моделирования для использования с частотами свыше 100 MHz, где SPICE обычно становится неработоспособным. Радиочастотный набор программы Multisim включает специальную библиотеку деталей, мастер создания радиочастотных моделей, радиочастотные виртуальные инструменты и радиочастотные анализаторы. VHDL и Verilog функции - простой способ работы для начинающих использовать HDLs, который представляет собой инструмент моделирования сложных цифровых деталей, которые не могут быть смоделированы в SPICE. VHDL и Verilog - возможность моделирования деталей без необходимости понимать HDL синтаксис. VHDL и Verilog - самостоятельный инструмент конструирования с редакторами кодов, менеджерами проектов моделирования, выводом формы колебаний и отладкой, совместным моделированием со SPICE, полным соответствие стандартам.

Multisim позволяет работать группе конструкторов над идентичными схемами в реальном времени через локальную сеть или Интернет. С помощью Multisim можно вводить специальные поля для характеристики деталей, такие как стоимость, время поставки или предпочтительный поставщик.

Совместное использование Multisim и технологии виртуальных приборов, позволяет инженерам-разработчикам печатных плат и преподавателям электротехнических специальностей достичь полной непрерывности цикла проектирования, состоящего из трех этапов: изучение теории, создание принципиальной схемы моделируемой системы, изготовление прототипа и проведение тестовых испытаний.

В Multisim 10.0 и Ultiboard 10.0 реализовано большое количество функции для профессионального проектирования, ориентированных на самые современные средства моделирования, улучшенную компонентную базу данных и расширение пользовательского сообщества. Компонентная база данных включает в себя более 1200 новых элементов и более 500 новых SPICE-моделей от ведущих производителей, таких, как Analog Devices, Linear Technology и Texas Instruments, а также более 100 новых моделей импульсных источников питания.

Помимо этого, в новой версии программного обеспечения появился помощник Convergence Assistant, который автоматически корректирует параметры SPICE, исправляя ошибки моделирования, была добавлена поддержка стандартов BSIM 4, а так же расширены возможности отображения и анализа данных, включая новый пробник для значений тока и обновленные статические пробники для дифференциальных измерений.

Практические занятия

Общие сведения о программе Multisim

Программа Multisim является версией 6.02 (в 2007 г. появилась 10 версия) программы Electronics Workbench (EWB) разработки фирмы Interactive Image Technologies. Особенностью программы является наличие контрольно-измерительных приборов, обширных библиотек электронных компонентов, в том числе логических микросхем малой и средней степени интеграции.

Программа позволяет моделировать логические устройства, набирая их из отдельных компонентов, анализировать поведение схемы при различных воздействиях на аргументы, проводить «реконструкцию», заменяя одни элементы другими. При этом экономятся материальные средства, затрачиваемые на лабораторное оборудование и его обслуживание, пропадает риск «пережигания» элементов, возникающий при отладке реальных схем.

Ознакомимся с элементной базой и приборами анализа, используемыми в данной работе.

Логические элементы вызываются из библиотеки MISC, последовательным нажатием левой клавиши мыши на символы:

В библиотеке MISC широко представлены двух и многовходовые логические элементы И (AND)-U1, ИЛИ (OR)-U2, НЕ (NOT)-U3, И-НЕ (NAND)-U4, ИЛИ-НЕ (NOR)-U5, М2 (EOR)-U6, М2 с инверсией (ENOR)-U7,

И-ИЛИ-НЕ (AND-OR-N)-U8:

Кроме представленных логических элементов потребуются пассивные элементы-резисторы и резисторные сборки, средства коммутации-включатели и кнопки, источники питания. Все эти элементы и средства можно извлечь из соответствующих разделов библиотек:

Управление входными аргументами схемы можно осуществлять как в ручном, так и автоматическом режимах. Ручное управление, т.е. подача логических нулей и единиц производится при помощи контактных коммутаторов, а автоматическое с помощью генератора логических сигналов Word Generator.

Генератор может выдавать двоичные слова разрядностью в 32 бита, а кодовые комбинации необходимо задавать в шестнадцатеричном коде.

Каждая кодовая комбинация заносится с помощью клавиатуры, номер редактируемой ячейки фиксируется в окошке EDIT блока ADRESS. В процессе работы генератора в отсеке ADRESS индицируется номер текущей ячейки CURRENT, ячейки инициализации или начала работы INITIAL и конечной ячейки FINAL. К дополнительным органам управления относятся кнопки CYCLE – циклический режим начиная с нулевой ячейки, BURST – с выбранного слова до конца, STEP – пошаговый режим, BREAKPOINT – прерывание работы генератора в указанной ячейке.

Для перенесения компонента из библиотеки на рабочее поле курсор мыши подводится к значку соответствующего раздела, при этом его название подсвечивается. После выбора компонента курсором мыши и нажатия ее левой кнопки (отмена выбора – нажатие правой кнопки) возможны два варианта. В первом, наиболее простом случае, курсор мыши в форме стрелки с выбранным компонентом переносится на рабочее поле и нажимается левая кнопка мыши. Во втором случае вызов компонента сопровождается вызовом окна, Если необходимо отредактировать параметры компонента, то в этом окне нажимается кнопка Edit, проводится коррекция параметров, и только после нажатия кнопки ОК в этом окне курсор мыши принимает указанную форму.

Соединение выводов всех элементов друг с другом осуществляется только проводами. Не допускается наложение выводов элементов друг на друга – при этом соединение не устанавливается. Для прокладки соединительных проводников курсор мыши необходимо подвести к выводу компонента и когда курсор примет крестообразную форму, нажать-отпустить левую кнопку мыши, проводник в виде пунктирной линии протянуть к выводу второго компонента и снова нажать-отпустить левую кнопку мыши. Для удаления проводника он выделяется и нажимается клавиша Delete. При изменении формы проводника он отмечается, при этом точки его перегибов и соединений с выводами компонента отмечаются квадратиками, которые и служат для перемещения курсором мыши его отдельных частей.

При установке курсора мыши на иконку прибора или на любой другой компонент схему и нажатия ее правой кнопки, вызывается динамическое меню, позволяющее вырезать (Gut), копировать (Copy), изменить цвет (Color) компонента, а также выполнить четыре команды по его перемещению (вращению).

При необходимости удаления в буфер, копирования, изменения цвета или перемещения компонента целесообразно воспользоваться соответствующими командами из меню Edit. Если требуется размножить некоторый компонент, то после его копирования курсор мыши ставится на свободное место рабочего поля и нажатием правой кнопки мыши вызывается второе динамическое меню, отличающееся от первого большим числом команд. После выбора из этого меню команды вставки Paste курсор мыши с прицепившимся к нему значком компонента устанавливается в требуемое место будущей схемы и нажимается левая кнопка мыши. Если компонент необходимо вставить в разрыв проводника, то он устанавливается так, чтобы его выводы с обеих сторон совпали с проводником, после чего нажимается левая кнопка мыши. Для удаления компонента он отмечается и нажимается клавиша Delite, при этом удаляются и присоединенные к нему проводники.