Multisim примеры. Пример моделирования схемы


В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!

Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями компонентов: реальными (real) и виртуальными (virtual). Необходимо ясно понимать различия между ними, чтобы в полной мере воспользоваться их преимуществами.

Рис.6 Символы различных компонентов: 7-сегментный дисплей, диод D 1, источник напряжения V 1, логические элементы НЕ-И U 2A , микроконтроллерU 3 и транзистор Q 1.

Есть и другая классификация компонентов: аналоговые, цифровые, смешанные, анимированные, интерактивные, цифровые с мультивыбором, электромеханические и радиочастотные.

Горячая клавиша по умолчанию для размещения компонента – Ctrl+W или двойной щелчок мыши по панели Реальные компоненты / Аналоговые устройства .

У реальных компонентов, в отличие от виртуальных есть определенное, неизменяемое значение и свое соответствие на печатной плате.

Виртуальные компоненты нужны только для эмуляции, пользователь может назначить им произвольные параметры. Например, сопротивление виртуального резистора может быть произвольным. Виртуальные компоненты помогают разработчикам при проверке с помощью схем с известными значениями компонентов. Виртуальные компоненты также могут не соответствовать реальным, например, как 4-х контактный элемент отображения 16-тиричных цифр.

В Multisim есть базы данных трех уровней:

Из Главной базы данных (Master Database) можно только считывать информацию, в ней находятся все компоненты;

Пользовательская база данных (User Database) соответствует текущему пользователю компьютера. Она предназначена для хранения компонентов, которые нежелательно предоставлять в общий доступ;

Корпоративная база данных (Corporate Database). Предназначена для тех компонентов, которые должны быть доступны другим пользователям по сети.

Средства управления базами данных позволяют перемещать компоненты, объединять две базы в одну и редактировать их. Все базы данных разделяются на группы, а они, в свою очередь, на семейства. Когда пользователь выбирает компонент и помещает его в схему, создается новая копия. Все изменения с ней никак не затрагивают информацию, хранящуюся в базе данных.

База данных Master Database разделена на группы:

1. Sources содержит все источники напряжения и тока, заземления. Например, power sources (источники постоянного, переменного напряжения, заземление, беспроводные соединения - VCC, VDD, VSS, VEE), signal voltage sources (источники прямоугольных импульсов, источник сигнала через определенные промежутки времени), signal current sourses (постоянные, переменные источники тока, источники прямоугольных импульсов)

2. Basic содержит основные элементы схемотехники: резисторы, индуктивные элементы, емкостные элементы, ключи, трансформаторы,реле, коннекторы и т.д.

3. Diodes содержит различные виды диодов: фотодиоды, диоды Шоттки, светодиоды и т.д.

4. Transistors содержит различные виды транзисторов: pnp-, npn-транзисторы, биполярные транзисоры, МОП-транзисторы, КМОП-транзисторы и т.д.

5. Analog содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

6. TTL содержит элементы транзисторно-транзисторной логики.

7. CMOS. Содержит элементы КМОП-логики.

8. MCU Module – управляющий модуль многопунктовой связи (от англ. multipoint control unit)

9. Advanced_Peripherals содержит подключаемые внешние устройства (дисплеи, терминалы, клавишные поля).

10. Misc Digital содержит различные цифровые устройства.

11. Mixed содержит комбинированные компоненты

12. Indicators содержит измерительные приборы (вольтметры амперметры), лампы и т.д.

3.1. Источники сигналов(вкладки Power Source Components и Signal Source Components).

Рис.7 Семейства компонента источники.

Под источниками сигналов подразумеваются не только источники питания, но и управляемые источники (таблица 8).

Таблица 8.

Изображение источника Функция
Батарея (напряжение). Длинная полоска соответствует положительной Клемме.
Заземление (метка).
Источники фиксированного напряжения. Применяются в логических схемах.
Генератор амплитудно-модулированных колебаний (напряжение и частота несущей, коэффициент и частота модуляции).
Источник постоянного тока (ток).
Источник переменного синусоидального напряжения (эффективное значение напряжения, частота, фаза).
Генератор однополярных прямоугольных импульсов (амплитуда, частота, коэффициент заполнения).
Генератор фазо-модулированных колебаний (напряжение и частота несущей, индекс и частота модуляции).

3.2. Пассивные элементы(вкладка Basic) – библиотека, в которой собраны все пассивные компоненты, а также коммуникационные устройства.


Рис. 8. Семейства компонента пассивные компоненты.


Рис. 9. Семейства компонента диоды.


Рис. 10 Семейства компонента транзисторы.

Таблица 9.

Изображение источника Функция
Резистор (сопротивление).
Катушка индуктивности (индуктивность).
Реле (находится только в библиотеке элементов).
Переключатель, управляемый нажатием заданной клавиши (по умолчанию – пробел).
Потенциометр (реостат). Параметр «Key» определяет символ клавиши клавиатуры (по умолчанию A), при нажатии на которую сопротивление уменьшается на заданную в процентах величину (параметр «Increment», по умолчанию 5%) или увеличивается на такую же величину при нажатии клавиш Shift+«Key». Параметр «Setting» задает начальную установку сопротивления в процентах (по умолчанию – 50%), параметр «Resistance» задает номинальное значение сопротивления.
Конденсатор и катушка индуктивности переменной емкости. Действуют аналогично потенциометру.
Конденсатор (емкость).
Трансформатор.
Полупроводниковый диод (тип).
Стабилитрон (тип).
Светодиод (тип).
Выпрямительный мост (тип).
Диод Шокли (тип).
Тиристор или динистор (тип).
Симметричный динистор или диак (тип).
Симметричный тринистор или триак (тип).
Биполярные n-p-n и p-n-p транзисторы, соответственно (тип).
Полевые транзисторы с управляющим p-n переходом (тип).
n - канальные с обогащенной подложкой и p -канальные с обедненной подложкой), с раздельными или соединенными выводами подложки и истока (тип).
Полевые МОП-транзисторы с изолированным затвором (n - канальные с обогащенным затвором и p -канальные с обедненным затвором), с раздельными или соединенными выводами подложки и истока (тип).

3.3. Аналоговые элементы(вкладка Analog) – библиотека, в которой собраны все усилители.

Кафедра радиоэлектроники

Т.В. Гордяскина, С.В. Лебедева

Моделирование радиотехнических цепей и сигналов в программной среде Multisim

Учебно-методическое пособие по выполнению

лабораторных работ и курсового проекта

для студентов дневного обучения по специальности

160905 «Техническая эксплуатация транспортного

радиооборудования»

Издательство ФГОУ ВПО «ВГАВТ»

Н. Новгород, 2010

УДК 519.876.5

Гордяскина Татьяна Вячеславовна, Лебедева Светлана Владимировна

Моделирование радиотехнических цепей и сигналов в программной среде Multisim: Учебно-методическое пособие по выполнению лабораторных работ и курсового проекта для студентов дневного обучения по специальности 160905 «Техническая эксплуатация транспортного радиооборудования». – Н. Новгород: Издательство ФГОУ ВПО «ВГАВТ», 2010. – 62 с.

В учебно-методическом пособии изложена методика выполнения лабораторных работ и курсового проекта по дисциплине «Радиотехнические цепи и сигналы» с помощью программного пакета Multisim.

Протокол № 9 от 28.05.2010 г.

© ФГОУ ВПО «ВГАВТ», 2010

Краткие теоретические сведения

Multisim – это интерактивный эмулятор схем, позволяющий разрабатывать устройства за минимальное время. Multisim включает в себя версию Multicap, что делает его идеальным средством для программного описания и немедленного последующего тестирования схем. Multisim также поддерживает взаимодействие с LabVIEW и Signal Express производства National Instruments для тесной интеграции средств разработки и тестирования.

Пакет Multisim использует стандартный интерфейс Windows. Интуитивность и простота интерфейса значительно облегчает его использование.

Multisim обеспечивает возможность разработки схемы и ее тестирования / эмуляции из одной среды разработки.

Кроме традиционного анализа SPICE, Multisim позволят пользователям подключать к схеме виртуальные приборы. Это простой и быстрый способ увидеть результат с помощью имитации реальных событий.

При необходимости более сложного анализа Multisim предлагает различные функции анализа. В Multisim входит Grapher – мощное средство просмотра и анализа данных эмуляции.

Возможность изменения цвета проводников позволяет сделать схему более удобной для восприятия. Можно отображать различными цветами и графики, что очень удобно при одновременном исследовании нескольких зависимостей.

Основы работы в программном пакете Multisim

Интерфейс пользователя состоит из нескольких основных элементов, которые представлены на рис. 1.

В окне разработки (Design Toolbox) находятся средства управления различными элементами схемы.

Глобальные настройки (рис. 2) управляют свойствами среды Multisim. Доступ к ним открывается из диалогового окна Свойства (Preferences). Выберите пункт Опции /глобальные настройки (Options /Global Preferences) , откроется окно Свойства со следующими закладками:

Paths (Путь) – указывает путь к файлам баз данных и другие настройки;

Parts (Компоненты) – выбор режима размещения компонентов и стандарта символов (ANSI или DIN) ;

ANSI или DIN – настройки эмуляции по умолчанию;

General (Общие) –изменение поведения прямоугольника выбора, колеса мыши и инструментов соединения и автоматического соединения.

Обзор компонентов

Компоненты – это основа любой схемы, это все элементы, из которых она состоит, Multisim оперирует с двумя категориями компонентов: реальными (real) и виртуальными (virtual). У реальных компонентов, в отличие от виртуальных, есть определенное, неизменяемое значение и свое соответствие на печатной плате. Виртуальные компоненты нужны только для эмуляции, пользователь может назначить им произвольные параметры.

В Multisim есть и другая классификация компонентов: аналоговые, цифровые, смешанные, анимированные, интерактивные (компоненты управляются с помощью клавиш, указанных под каждым элементом), цифровые с мультивыбором, электромеханические и радиочастотные.

На панели компонентов представлены поля источников (place sourse), основных элементов (place basic),диодов (place diode), транзисторов (place transistor), аналоговых (place analog), индикаторов (place indicator) и др.

Проводник компонентов (Component Browser) – это место, где выбираются компоненты для размещения их на схеме. После двойного щелчка мыши курсор примет форму компонента, пока будет выбрано место на схеме для компонента.

В проводнике компонентов отображается текущая база данных, в которой хранятся отображаемые элементы. В Multisim они организованы в группы (groups) и семейства (families) . Также в проводнике отображается описание компонента (поле Назначение Function), модель и печатная плата или производитель.

В группе источников можно выбрать источники постоянного и переменного напряжения, тока, мощности; зависимые источники (например, источники напряжения и тока, управляемые током или напряжением) и др.

В группе основных элементов выбирают переключатели, трансформаторы, разъемы, реле, постоянные и переменные резисторы, конденсаторы, катушки индуктивности и др. элементы.

В группе индикаторов размещены пробники, цифровые индикаторы, лампы накаливания, вольтметры и амперметры.

После выбора компонентов из базы данных они размещаются на схеме и соединяются между собой. В это время и после установки компоненты можно повернуть. Чтобы выбрать компонент, просто щелкните по нему мышью. Для выбора нескольких компонентов прижмите кнопку мыши и перемещайте ее, рисуя прямоугольник выбора вокруг нужных компонентов. Выбранные компоненты обозначаются пунктирной линией.

Компоненты можно заменять на другие с помощью их контекстного меню, пункта Заменить компоненты (Replace Component(s)) . Новые компоненты выбираются в открывшемся дополнительном окне проводника компонентов. Соединения компонентов после замены Multisim восстановит.

Чтобы начать вести соединяющий провод, кликните по разъему, чтобы завершить соединение, кликните по конечному выводу. После появления проводника Multisim автоматически присвоит ему номер в сети. Номера увеличиваются последовательно, начиная с 1. Заземляющие провода всегда имеют номер 0 – это требование связано с работой скрытого эмулятора SPICE. Чтобы изменить номер соединения или присвоить ему логическое имя, необходимо дважды кликнуть по проводнику и ввести новое значение.

Приборы

Виртуальные приборы – это модельные компоненты Multisim, которые соответствуют реальным приборам. Например, среди виртуальных приборов в Multisim есть осциллографы, генераторы сигналов, анализаторы спектра и др.

Чтобы добавить виртуальный прибор, выберите его с панели приборов (Instruments) , рис. 4. Чтобы посмотреть лицевую панель прибора, дважды кликните на иконку прибора. Выводы прибора соединяются с элементами схемы так же, как и другие компоненты.

В Multisim также есть эмулированные реально существующие приборы Agilent и Tektronix.

1.2.1. Генератор сигналов

Генератор XFG1 является идеальным источником напряжения, вырабатывающим сигналы синусоидальной, прямоугольной или треугольной формы.

Средний вывод генератора при подключении к схеме обеспечивает общую точку для отсчета амплитуды переменного напряжения. Для отсчета напряжения относительно нуля общий вывод заземляют. Крайние правый и левый выводы служат для подачи переменного напряжения на схему. Напряжение на правом выводе изменяется в положительном направлении относительно общего вывода, напряжение на левом выводе – в отрицательном.

Двойным щелчком мыши на уменьшенном изображении открывается увеличенное изображение генератора (рис. 5).

1.2.2. Осциллограф

Осциллограф XSC1, представляет собой аналог двухлучевого запоминающего осциллографа. Можно подключить осциллограф к уже включённой схеме или во время работы cxемы переставить выводы к другим точкам – изображение на экране осциллографа изменится автоматически.

Остановить процесс расчета параметров и характеристик схемы в любой момент времени можно нажатием клавиши F9 или выбором пункта Pause (Пауза) в меню Circuit. Продолжить расчет можно повторным нажатием клавиши F9 или выбором пункта Resume меню Circuit. Нажатием кнопки "Пуск-Стоп" в верхнем углу экрана начинается или прекращается расчет параметров схемы.

На схему выводится уменьшенное изображение осциллографа. На этом изображении имеется четыре входных зажима: верхний правый зажим – общий; нижний правый – вход синхронизации; левый и правый нижние зажимы представляют собой соответственно вход канала А (channel А) и вход канала В (channel В).

Двойным щелчком мыши по уменьшенному изображению открывается изображение передней панели осциллографа (рис. 6).

Непосредственно под экраном находится линейка прокрутки, позволяющая наблюдать любой временной отрезок процесса от момента включения до момента выключения схемы.

На экране осциллографа расположены два курсора, обозначаемые 1 и 2, при помощи которых можно измерить мгновенные значения напряжений в любой точке осциллограммы. Для этого просто переместите мышью курсоры за треугольники в их верхней части в требуемое положение. Координаты точек пересечения первого курсора с осциллограммой отображаются в верхней строке, координаты второго курсора – в средней строке. В нижней строке отображаются значения разностей между соответствующими координатами первого и второго курсоров. Результаты можно записать в файл. Для распечатки полученных осциллограмм удобно получить изображение на белом фоне, нажав кнопку .

1.2.3. Анализатор спектра XSA1

Анализатор спектра XSА1, предназначен для определения спектра сигнала в любой точке радиотехнической цепи. Можно подключить анализатор спектра к уже включённой схеме или во время работы cxемы переставить выводы к другим точкам – изображение на экране анализатора спектра изменится автоматически.

На рис. 7 представлена передняя панель анализатора спектра с изображением амплитудного спектра положительного гармонического сигнала S(t)=1+Sin(2p1000t).

Для корректного отображения спектра необходимо выбрать диапазон частот, задавая начальное значение диапазона в окне Start, конечное значение – в поле End, сохранить настройки, нажав Enter. Перемещая маркер, внизу рабочего окна получаем значения частоты и амплитуды выбранной гармоники.


Похожая информация.


В связи с широким развитием вычислительных устройств задача расчета и моделирования электрических схем заметно упростилась. Наиболее подходящим программным обеспечением для данных целей является продукт National instruments – Multisim (Electronic Workbench).

В данной статье рассмотрим простейшие примеры моделирования электрических схем с помощью Multisim.

Итак, у нас имеется Multisim 12 это последняя версия на момент написания статьи. Откроем программу и создадим новый файл с помощью сочетания Ctrl+N.



После создания файла перед нами открывается рабочая зона. По сути, рабочая зона Multisim – это поле для собирания требуемой схемы из имеющихся элементов, а их выбор, поверьте велик.

Кстати вкратце о элементах. Все группы по умолчанию расположены на верхней панели. При нажатии на какую либо группу, перед вами открывается контекстное окно, в котором вы выбираете интересующий вас элемент.


По умолчанию используется база элементов – Master Database. Компоненты содержащиеся в ней разделены на группы.

Перечислим вкратце содержание групп.

Sources содержит источники питания, заземление.

Basic – резисторы, конденсаторы, катушки индуктивности и т.д.

Diodes – содержит различные виды диодов.

Transistors - содержит различные виды транзисторов.

Analog - содержит все виды усилителей: операционные, дифференциальные, инвертирующие и т.д.

TTL - содержит элементы транзисторно-транзисторная логики

CMOS - содержит элементы КМОП-логики.

MCU Module – управляющий модуль многопунктовой связи.

Advanced_Peripherals – подключаемые внешние устройства.

Misc Digital - различные цифровые устройства.

Mixed - комбинированные компоненты

Indicators - содержит измерительные приборы и др.

С панелью моделирования тоже ничего сложного, как на любом воспроизводящем устройстве изображены кнопки пуска, паузы, останова. Остальные кнопки нужны для моделирования в пошаговом режиме.

На панели приборов расположены различные измерительные приборы (сверху вниз) - мультиметр , функциональный генератор, ваттметр, осциллограф, плоттер Боде, частотомер, генератор слов, логический конвертер, логический анализатор, анализатор искажений, настольный мультиметр.

Итак, бегло осмотрев функционал программы, перейдём к практике.

Пример 1

Для начала соберём простенькую схему, для этого нам понадобиться источник постоянного тока (dc-power) и пара резисторов (resistor).

Допустим нам необходимо определить ток в неразветвленной части, напряжение на первом резисторе и мощность на втором резисторе. Для этих целей нам понадобятся два мультиметра и ваттметр. Первый мультиметр переключим в режим амперметра, второй – вольтметра, оба на постоянное напряжение. Токовую обмотку ваттметра подключим во вторую ветвь последовательно, обмотку напряжения параллельно второму резистору.

Есть одна особенность моделирования в Multisim – на схеме обязательно должно присутствовать заземление, поэтому один полюс источника мы заземлим.

После того как схема собрана нажимаем на пуск моделирования и смотрим показания приборов.


Проверим правильность показаний (на всякий случай=)) по закону Ома


Показания приборов оказались верными, переходим к следующему примеру.

Пример 2

Соберём усилитель на биполярном транзисторе по схеме с общим эмиттером. В качестве источника входного сигнала используем функциональный генератор (function generator). В настройках ФГ выберем синусоидальный сигнал амплитудой 0,1 В, частотой 18,2 кГц.

С помощью осциллографа (oscilloscope) снимем осциллограммы входного и выходного сигналов, для этого нам понадобится задействовать оба канала.

Чтобы проверить правильность показаний осциллографа поставим на вход и на выход по мультиметру, переключив их предварительно в режим вольтметра.

Запускаем схему и открываем двойным кликом каждый прибор.


Показания вольтметров совпадают с показаниями осциллографа, если знать что вольтметр показывает действующее значение напряжения, для получения которого необходимо разделить амплитудное значение на корень из двух.

Пример 3

С помощью логических элементов 2 И-НЕ соберём мультивибратор, создающий прямоугольные импульсы требуемой частоты. Чтобы измерить частоту импульсов воспользуемся частотомером (frequency counter), а проверим его показания с помощью осциллографа.


Итак, допустим, мы задались частотой 5 кГц, подобрали опытным путём требуемые значения конденсатора и резисторов. Запускаем схему и проверяем, что частотомер показывает приблизительно 5 кГц. На осциллограмме отмечаем период импульса, который в нашем случае равен 199,8 мкс. Тогда частота равна

Мы рассмотрели только малую часть всех возможных функций программы. В принципе, ПО Multisim будет полезен как студентам, для решения задач по электротехнике и электронике, так и преподавателям для научной деятельности и т.д.

Надеемся данная статья оказалась для вас полезной. Спасибо за внимание!

Для примера рассмотрим усилительный каскад на биполярном транзисторе - включенным в схему с обшим эмиттером. Построим графики зависимости выходного и входного напряжений от времени, передаточную характеристику, амплитудно-частотную и фазо-частотную характеристики.

1) Соберем исследуемую схему в среде Multisim
Примечание:
-двойное нажатие левой кнопкой мыши на элемент позволяет изменить его параметры
-для удобства при работе можно изменять цвет проводов (выделяем провод правой кнопкой мыши и в появившемся контекстном меню выбираем Change Color)

2) Запускаем схему, осциллограф автоматически строит графики зависимости входного и выходного напряжений от времени (для того, чтобы их посмотреть, достаточно нажать левой кнопкой мыши на осциллографе).

В активном окне Oscilloscope-XSC1 можно увеличивать и уменьшать масштаб, сдвигать графики по осям ординат и абсцисс, с помощью курсора смотреть параметры в каждой точке графика (здесь- значение напряжения), с помощью кнопки Save можно сохранить данные осциллографа в виде таблице в текстовом файле.

3) Построение аналогичных графиков с помощью Transient Analysis.
С помощью кнопки плоттера отображение курсоров и данных можно посмотреть значение напряжений в любой точке. При анализе графики для удобства отображаются разными цветами.

В окне Transient Analysis на вкладке Output выбираем необходимые для анализа величины, а на вкладке Analysis Parameters можно установить начальное и конечное время анализа (такие же действия производятся в любом виде анализа).

4) Построение передаточной характеристики (зависимость выходного напряжения от входного) с помощью DC-Sweep Analysis. Работа в плоттере (Grapher View) с графиком осуществляется аналогично.

5) Построение АЧХ и ФЧХ (с помощью AC-Analysis).